Soal
Permutasi
1.Berapa banyak permutasi dari huruf ABC ?
Terdapat 3:2:1 = 6 permutasi dari huruf ABC.
2.Berapa banyak permutasi dari huruf ABCDEF jika subuntai ABC harus selalu
muncul bersama?
Karena subuntai ABC harus selalu muncul bersama, maka subuntai ABC
bisa dinyatakan sebagai satu unsur. Dengan demikian terdapat 4 unsur yang
dipermutasikan, sehingga banyaknya permutasi adalah 4:3:2:1 = 24.
3. Sekelompok mahasiswa yang terdiri dari 10 orang akan mengadakan rapat dan duduk mengelilingi sebuah meja, ada berapa carakah kelima mahasiswa tersebut dapat diatur pada sekeliling meja tersebut?
Jawab:
P5 = (10-1)!
= 9.8.7.6.5.4.3.2.1
= 362880 cara
P5 = (10-1)!
= 9.8.7.6.5.4.3.2.1
= 362880 cara
4. Tentukan banyaknya permutasi siklus dari 3 unsur yaitu A, B, C
jawab:
Jika A sebagai urutan I : ABC
Jika B sebagai urutan I : BCA
Jika C sebagai urutan III : CAB
Jika banyak unsur n=4 –> A, B, C, D
jadi banyaknya permutasi siklis dari 4 unsur ( A B C D) adalah 4!/4 = 4.3.2.1/4 = 6
jawab:
Jika A sebagai urutan I : ABC
Jika B sebagai urutan I : BCA
Jika C sebagai urutan III : CAB
Jika banyak unsur n=4 –> A, B, C, D
jadi banyaknya permutasi siklis dari 4 unsur ( A B C D) adalah 4!/4 = 4.3.2.1/4 = 6
5. Berapa banyaknya permutasi dari cara duduk yang dapat terjadi jika 8 orang disediakan 4 kursi, sedangkan salah seorang dari padanya selalu duduk dikursi tertentu.
Jawab:
Jika salah seorang selalu duduk dikursi tertentu maka tinggal 7 orang dengan 3 kursi kosong.
Maka banyaknya cara duduk ada :
7P3 = 7!/(7-3)! = 7!/4! = 7.6.5 = 210 cara
Jika salah seorang selalu duduk dikursi tertentu maka tinggal 7 orang dengan 3 kursi kosong.
Maka banyaknya cara duduk ada :
7P3 = 7!/(7-3)! = 7!/4! = 7.6.5 = 210 cara
6. Ada berapa cara 7 orang yang duduk mengelilingi meja dapat menempati ketujuh tempat duduk denganurutan yang berlainan?
Jawab:
Banyaknya cara duduk ada (7 - 1) ! = 6 ! ® 6 . 5 . 4. 3 . 2 . 1 = 720 cara.
Banyaknya cara duduk ada (7 - 1) ! = 6 ! ® 6 . 5 . 4. 3 . 2 . 1 = 720 cara.
7. Dalam sebuah ruangan terdapat 9 orang. Jika mereka saling bersalaman maka berapa banyak salaman yang akan terjadi?
Jawab:
9C2 = 9!/2!(9-2)! = (9×8×7!)/2!7! = 36
9C2 = 9!/2!(9-2)! = (9×8×7!)/2!7! = 36
8. Terdapat tiga orang (X, Y dan Z) yang akan duduk bersama di sebuah bangku. Ada berapa urutan yang dapat terjadi ?
Jawab:
nPx = n!
3P3 = 3!
= 1 x 2 x 3
= 6 cara (XYZ, XZY, YXZ, YZX, ZXY, ZYX).
Jawab:
nPx = n!
3P3 = 3!
= 1 x 2 x 3
= 6 cara (XYZ, XZY, YXZ, YZX, ZXY, ZYX).
9. Suatu kelompok belajar yang beranggotakan empat orang (A, B, C dan D) akan memilih ketua dan wakil ketua kelompok. Ada berapa alternatif susunan ketua dan wakil ketua dapat dipilih ?
Jawab:
nPx = (n!)/(n-x)!
4P2 = (4!)/(4-2)!
= 12 cara (AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC) .
Jawab:
nPx = (n!)/(n-x)!
4P2 = (4!)/(4-2)!
= 12 cara (AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC) .
10. Menjelang HUT RI yang akan datang di salah satu desa akan dibentuk panitia inti sebanyak 2 orang (terdiri dari ketua dan wakil ketua), calon panitia tersebut ada 6 orang yaitu: a, b, c, d, e, dan f. Ada berapa sang calon yang dapat duduk sebagai panitia inti tersebut?
Jawab :
6P2 = 6!/(6-2)!
= (6.5.4.3.2.1)/(4.3.2.1)
= 720/24
= 30 cara
6P2 = 6!/(6-2)!
= (6.5.4.3.2.1)/(4.3.2.1)
= 720/24
= 30 cara
Kombinasi
11.Dalam suatu pertemuan terdapat 10 orang yang belum saling kenal. Agar mereka saling kenal maka mereka saling berjabat tangan. Berapa banyaknya jabat tangan yang terjadi.
Jawab:
10C2 = (10!)/(2!(10-2)!) = 45 jabat tangan
Jawab:
10C2 = (10!)/(2!(10-2)!) = 45 jabat tangan
12. Siswa di minta mengerjakan 9 dari 10 soal ulangan, tetapi soal 1-5 harus di kerjakan. Banyaknya pilihan yang dapat diambil murid adalah.
Jawab:
5C4 = 5!/4!(5-4)! = (5×4!)/4!1! = 5 cara
Jawab:
5C4 = 5!/4!(5-4)! = (5×4!)/4!1! = 5 cara
13. 8 anak pada suatu acara saling berjabat tangan satu sama lain. Tentukan banyaknya jabat tangan yang terjadi!
Jawab :
Kombinasi dengan n = 8 dan r = 2
8! 8! 8 . 7 . 6 !
8 C 3 = _____________ = __________ = _______________ = 28 jabat tangan
(8 − 2)! 2! 6! 2! 6! 2.1
Jawab :
Kombinasi dengan n = 8 dan r = 2
8! 8! 8 . 7 . 6 !
8 C 3 = _____________ = __________ = _______________ = 28 jabat tangan
(8 − 2)! 2! 6! 2! 6! 2.1
14. 6 orang siswa terpilih untuk mengikuti perlombaan tenis meja ganda. Tentukan banyaknya cara penyusunan pasangan pemain dari keenam siswa tersebut!
Jawaban :
Kombinasi 2 dari 6 :
6! 6! 6.5.4 !
6C2 = ___________ = ________ = ___________ = 15 cara pemasangan
(6 -2)! 2! 4! 2! 4! 2.1
Jawaban :
Kombinasi 2 dari 6 :
6! 6! 6.5.4 !
6C2 = ___________ = ________ = ___________ = 15 cara pemasangan
(6 -2)! 2! 4! 2! 4! 2.1
15. Seorang peternak akan membeli 3 ekor ayam dan 2 ekor kambing dari seorang pedagang yang memiliki 6 ekor ayam dan 4 ekor kambing. Dengan berapa cara peternak tersebut dapat memilih ternak-ternak yang di inginkannya?
Jawaban:
Banyak cara memilih ayam = 6C3 = 6!/3!(6-3)! = 6!/3!3! = 20 cara
Banyak cara memilih kambing = 4C2 = 4!/2!(4-2)! = (4×3×2!)/2!2! = 6 cara
Jadi, peternak tersebut memiliki pilihan sebanyak = 20×6 = 120 cara
Jawaban:
Banyak cara memilih ayam = 6C3 = 6!/3!(6-3)! = 6!/3!3! = 20 cara
Banyak cara memilih kambing = 4C2 = 4!/2!(4-2)! = (4×3×2!)/2!2! = 6 cara
Jadi, peternak tersebut memiliki pilihan sebanyak = 20×6 = 120 cara
16. tentukan banyaknya cara menyusun hurufhuruf
dari kata KAKIKUKAKU
Diketahui n = 10, n1 = 5, n2 = 2, n3 = 2 dan n4 = 1.
jawab:
10! 10:9:8:7:6
_______ = __________ = 7560
5!:2!:2!:1! 2:2
17. 4 Sebuah perusahaan membutuhkan karyawan yg terdiri dari 5 putra dan 3 putri. Jika terdapat 15 pelamar, 9 diantaranya putra. Tentukan banyaknya cara menyeleksi karyawan!Jawab :
Pelamar putra = 9 dan pelamar putri 6 banyak cara menyeleksi :
9C5 x 6C3 = 9!/5!x(9-5)! x 6!/3!x(6-3)! = 2360
Pelamar putra = 9 dan pelamar putri 6 banyak cara menyeleksi :
9C5 x 6C3 = 9!/5!x(9-5)! x 6!/3!x(6-3)! = 2360
18. Suatu warna tertentu dibentuk dari campuran 3 warna yang berbeda. Jika terdapat 4 warna, yaitu Merah, Kuning, Biru dan Hijau, maka berapa kombinasi tiga jenis warna yang dihasilkan.
Jawab :
nCx = (n!)/(x!(n-x)!)
4C3 = (4!)/(3!(4-3)!)
= 24/6 = 4 (MKB, MKH, KBH, MBH).
nCx = (n!)/(x!(n-x)!)
4C3 = (4!)/(3!(4-3)!)
= 24/6 = 4 (MKB, MKH, KBH, MBH).
19. Dalam sebuah ujian, seorang mahasiswa diwajibkan mengerjakan 5 soal dari 8 soal yg tersedia. Tentukan:
a. banyaknya jenis pilihan soal yg mungkin untuk dikerjakan
b. banyaknya jenis pilihan soal yg mungkin dikerjakan jika no.6 dan 7 wajib dikerjakan.
Jawab:
c. 8 C5 = 8!/5!(8-5)! = (8×7×6×5!)/5!3! = 56 cara
d. 6C3 = 6!/3!(6-2)! = (6×5×4×3!)/3!3! = 20 cara
a. banyaknya jenis pilihan soal yg mungkin untuk dikerjakan
b. banyaknya jenis pilihan soal yg mungkin dikerjakan jika no.6 dan 7 wajib dikerjakan.
Jawab:
c. 8 C5 = 8!/5!(8-5)! = (8×7×6×5!)/5!3! = 56 cara
d. 6C3 = 6!/3!(6-2)! = (6×5×4×3!)/3!3! = 20 cara
20. Banyak cara memilih 4 pengurus dari 6 calon, yang ada sama dengan ....
Jawab :
6C4 = 6!/4!(6-4)! = (6×5×4!)/4!2! = 15 cara
6C4 = 6!/4!(6-4)! = (6×5×4!)/4!2! = 15 cara